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Abstract—It is well known that auto insurance companies
(ICs) use personalized car insurance (PCI) to continuously track
drivers’ behavior to determine their auto premiums. However,
drivers inevitably have concerns about the transparency of data
collection/processing and the potential privacy leakage. In this
paper, we propose a new PCI scheme to achieve privacy preser-
vation and transparency with the assistance of a consortium
blockchain. Specifically, a blockchain is first established by a
group of consortium members, and each IC can deploy insur-
ance contracts on the blockchain to support public verification
of data collection/processing and thus fulfill the transparency
requirement. Then a verifiable and privacy-preserving driving
behavior evaluation protocol is designed by tailoring partially
homomorphic encryption and zero-knowledge proof techniques.
Drivers can use the protocol to interact with ICs through
the contracts, and ICs can learn drivers’ behavior and set
corresponding auto premiums by analyzing encrypted driving
data. Furthermore, a third-party auditor (TPA) is authorized by
drivers and ICs to audit encrypted driving data on the contracts
and resist fraud attacks. We model the contract-based auditing
as a recursive inspection game where TPA can minimize the
number of audits to detect data fraud and penalize malicious
drivers according to Nash equilibrium. Therefore, the proposed
PCI scheme can guarantee that most of the collected driving
data are not biased. Formal simulation-based security analysis
is given to prove the security of the proposed scheme, and a
proof-of-concept prototype is also developed on an open-source
blockchain to demonstrate the feasibility.

Index Terms—Personalized car insurance, blockchain, privacy
preservation, fraud resistance, data auditing.

I. INTRODUCTION

Personalized Car Insurance (PCI, a.k.a. usage-based insur-
ance and pay-as-you-go insurance) has been widely adopted
by many auto insurance companies (ICs) in recent years,
as a more flexible auto insurance scheme compared with
traditional schemes [1]. By continuously tracking the driving
data of drivers such as daily trajectories, ICs can analyze
their behavior based on particular driving safety evaluation
models, and adaptively adjust their auto premiums based on
the evaluation results. With the rapid advancement in mobile
sensing technologies, PCI can be easily and conveniently
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deployed. Drivers only need to install and run applications
published by ICs on their smartphones, and the applications
can automatically collect and upload telematics data in the
background. Apparently, PCI brings mutual advantages to both
drivers and ICs, since it not only motivates drivers to drive
safely with less insurance fee, but also helps companies reduce
accident claim costs.

In spite of the aforementioned advantages, PCI still faces
several barriers, and one of which is the lack of transparency,
i.e., the rules of PCI are opaque and how drivers’ auto
premiums are calculated based on their behavior is unknown.
According to a recent report, some PCI schemes used by
ICs are not fair and may penalize people who are a group
disproportionately made up of low-income people driving to or
from a late shift [2]. To achieve the transparency requirement,
consortium blockchain has been introduced into vehicular
applications such as PCI [3]–[5]. The blockchain-assisted PCI
is a more robust PCI scheme, as a group of ICs can offer
decentralized trusts for drivers, compared with conventional
centralized schemes. Based on the decentralization, two exten-
sive properties, immutability and transparency, are guaranteed
such that drivers’ behavior and their auto premiums can be
evaluated unbiasedly and also be verifiable with the assistance
of smart contracts deployed in the blockchain. Moreover, the
blockchain-assisted PCI is believed to be a promising scheme
for sharing driving records and behavior, which is easier for
drivers to switch ICs [6].

However, it becomes very challenging for not only drivers
but also ICs to achieve privacy preservation in such a
blockchain-assisted scheme, to meet the requirements of pri-
vacy regulations such as GDPR [7]. In light of the charac-
teristics of the blockchain, drivers’ sensitive driving data are
stored and analyzed distributedly, making it hard for drivers to
manage and protect their data. From another perspective, the
private and valuable parameters of the driving safety evaluation
models trained by different ICs must be exposed for dis-
tributed model evaluation, which also violates model privacy
[8]. Aiming at these points, a straightforward method is to
apply homomorphic encryption [9]: driving data and model
parameters are encrypted using a shared public key generated
by a group of consortium companies, and driving behavior
can be analyzed in ciphertext to determine personalized auto
premiums. Yet, the approach has two drawbacks: 1) ICs must
work together to decrypt final evaluation results, which costs
additional computational and communication resources; and 2)
the model parameters can still be extracted under the model
extraction attacks with the inputs of the evaluation results,
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which cannot guarantee the model privacy [10].
To address the issues, we propose a new verifiable and

privacy-preserving driving behavior evaluation protocol be-
tween a driver and an insurance company. The protocol is
designed based on Paillier cryptosystem [11], which allows
both a driver and an insurance company to cooperatively eval-
uate the driver’s behavior atop a carefully-designed insurance
contract deployed in the blockchain. The evaluation results
only reveal whether the driver has a safe trip or not, since
the encrypted evaluation results are randomized by both sides
before disclosing them. Furthermore, to ensure the correctness
and verifiability of auto premiums received by drivers, we
design several efficient zero-knowledge proof protocols, and
seamlessly integrate them into the proposed protocol to resist
malicious adversaries that aim to bias the evaluation results.

It is noted that the encryption of driving data also raises
another security challenge, i.e., how to detect intentioned data
fraud in ciphertext [12]. To audit the cheats in the encrypted
driving data, ICs can authorize a trusted third-party auditor
such as government to decrypt the encrypted data and conduct
a detection algorithm on every driving record. Nevertheless,
the involvement of a trusted party increases the risk of unin-
tentional privacy exposure and also becomes a bottleneck. To
achieve fraud resistance while minimizing the participation of
the trusted party, we propose a contract-based auditing method
where the auditing process is modeled as a recursive inspection
game between ICs and drivers on top of smart contracts. In the
game, ICs set an auditing strategy based on probability and
audit part of the data uploaded by drivers. Malicious drivers
can also set their cheating strategies based on probability and
upload fabricated driving data accordingly. With the Nash
equilibrium, the parameters of an optimal auditing strategy can
be calculated from the perspective of ICs, which can maximize
the chance of detecting the cheating behavior of malicious
drivers with minimized auditing attempts. In this way, a
rationally malicious driver will not upload fabricated driving
data since there is no benefit. Our method can significantly
reduce the number of audits performed by the auditor to
minimize the risk of privacy leakage, as a Nash equilibrium
can always be found. For example, for a total number of 300
uploaded trips, although the auditor is only allowed to audit
at most 3 trips (auditing 1% of all reported driving data), the
possibility that a driver never cheats is 97%.

In summary, we propose a blockchain-assisted PCI scheme
that simultaneously achieves privacy preservation and fraud
resistance under a rationally malicious model, and the main
contributions are four-folds:

• We propose a consortium-blockchain-assisted PCI
scheme that achieves transparent driving behavior
evaluation and auto premium calculations on the top of
a well-designed smart contract of car insurance.

• We propose a verifiable and privacy-preserving driving
behavior evaluation protocol, which allows ICs to cor-
rectly analyze drivers’ behavior without leaking either
drivers’ sensitive data or companies’ model parameters.

• We propose a contract-based auditing method that signif-
icantly reduces the number of audits needed to achieve

fraud resistance and minimize the risk of privacy leakage
due to auditing.

• We formally analyze the security of the proposed scheme
based on a simulation-based approach and develop a
proof-of-concept prototype to demonstrate the feasibil-
ity of our scheme using an open-source consortium
blockchain and a real-world dataset.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model, define the ad-
versarial model, and identify the design goals. Then, we
propose our blockchain-assisted personalized car insurance
scheme that achieves privacy preservation and fraud resistance
in Section IV. Subsequently, security analysis and performance
evaluation are presented in Sections V and VI, respectively. Fi-
nally, Section VII reviews some related works and Section VIII
draws the conclusion of this work.

II. MODELS AND DESIGN GOALS

In this section, we formalize the system model and adver-
sarial model, and also present our design goals for achieving
transparent, verifiable, and privacy-preserving personalized car
insurance.

A. System Model

As shown in Figure 1, our system model consists of four
entities: drivers, an auto insurance company (IC), distributed
moderators (DMs), and a third-party auditor (TPA).

• Drivers are users of an auto insurance company who are
required to upload their driving data to IC over a long
period of time (e.g., six months) using a mobile App
published by IC. Based on collected driving data, IC can
determine a driver’s safety scores and accordingly give
different discounts on drivers’ auto insurance premiums.

• IC builds a driving safety evaluation model for measuring
drivers’ behavior. By monitoring a driver’s uploaded
driving data trip by trip, IC can calculate the driver’s auto
premiums based on his/her overall safety rating which is
decided by the aggregation of all driving safety scores.
Drivers with higher ratings can enjoy more discounts on
auto premiums.

• DMs are responsible for establishing a consortium
blockchain to record each driver’s driving data and auto
premiums transparently as a distributed ledger. Smart
contracts can be deployed in the blockchain and can be
triggered by drivers, IC, and TPA to reach an agreement
about auto premiums without trusted intermediates. In
the real world, they can be a group of consortium auto
insurance companies.

• TPA is maintained by the government. A driver and
IC can authorize TPA to audit the driver’s data. TPA
generally owns other data sources, e.g., deployed roadside
cameras, and is able to identify the manipulated driving
data uploaded by a driver who wants to cheat IC.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3215811

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:32:52 UTC from IEEE Xplore.  Restrictions apply. 



3

…

Distributed  Moderators

…

Consortium Blockchain Car Insurance Company (IC)

Third-party Auditor (TPA)

On-road Drivers with Smartphones

Driver B

Driver C

Driver A

Contract: Driver A, IC and TPA Contract: Driver B, IC and TPA Contract: Driver C, IC and TPA

Basic Auto Insurance: $2400

Driving Safety Score: 80

Personalized Insurance: $ 2000
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Start Date: 2022/05/23

End Date: 2023/05/27

Auditing Number: 3 Auditing Number: 2 Auditing Number: 5

Fig. 1. System model under consideration

B. Adversarial Model

Based on the system model, adversaries are considered
to be rationally malicious. Compared with fully malicious
adversaries, rational adversaries only perform maliciously to
maximize their profits. Their malicious behaviors are outcome-
driven, i.e., adversaries will take the action that results in the
best outcome. Concretely, IC may behave maliciously to infer
sensitive information from collected drivers’ data. Although
various privacy laws are enforced to regulate IC’s privacy
policies, they cannot technically prevent internal adversaries
from compromising data privacy as internal attacks are hard
to be detected. To maximize its payoff, IC may choose to
decrease the safety score of a driver who drives safely, by
deviating from the scheme. We do not consider the situation
that IC deliberately modifies their model parameters, since the
attack can be easily handled by the technique proposed in
[13], where IC is required to prove the model accuracy of a
public dataset while preserving model privacy. From another
perspective, drivers may behave maliciously to cheat IC by
uploading fake driving data. By doing so, they can obtain more
discounts on their auto insurance premium. In addition, drivers
may be curious about the model parameters trained by IC and
behave maliciously to compromise the model privacy.

Following the literature that is designed based on a consor-
tium blockchain [14], [15], our scheme’s security is established
on an assumption that only a minority of DMs can be
compromised by malicious drivers and IC, and the majority of
them are honest (e.g., more than 2

3 DMs are honest if Practical
Byzantine Fault Tolerance protocol (PBFT) is chosen as the
consensus protocol used in the consortium blockchain) [16],
[17]. As a government department whose purpose is to identify
data fraud in our scheme, TPA is conditionally trusted. TPA
is normally trusted to some extent, but to make the model
more realistic, less auditing information should be shared with
TPA, since the information shared with TPA may be leaked
unintentionally.

Strong collusion attacks are also considered in our scheme,
where malicious drivers can collude with each other to per-
form attacks on model parameters. Malicious drivers can also
collude with IC to infer other drivers’ reported data. Note that
we mainly focus on the application-layer attacks and thus other

attacks are beyond the scope of the paper.

C. Design Goals

Based on the system model and adversarial model, we have
the following objectives:

• Driver Privacy: The driving data collected from a driver
should not be exposed to IC, other drivers, or external
adversaries to achieve privacy preservation in the system.

• Model Privacy: The model parameters hold by ICs for
evaluating a driver’s safety score should not be obtained
by any internal or external adversaries.

• Fraud Resistance: The scheme should prevent drivers
from reporting fabricated driving data as much as pos-
sible, with the help of TPA.

• Transparency of Auto Insurance: How ICs collect drivers’
driving data and calculate their insurance fees are trans-
parent. To achieve the objective, the following two sub-
goals should be guaranteed:
– Public Verifiability: Each driver’s safety score can

be verified by any entity to ensure that the score is
calculated following the evaluation model defined by
ICs.

– Permission-based Audit: Every audit is performed
based on the permission of drivers, i.e., TPA and ICs
cannot audit the data of a driver without the permission
of the driver.

III. PRELIMINARIES

In this section, we present some preliminaries including
cryptographic building blocks, a driving safety evaluation
model for calculating personalized auto premiums, the basic
knowledge about game theory, and consortium blockchain.

A. Building Blocks

1) Paillier Cryptosystem: Paillier Cryptosystem is a par-
tially homomorphic cryptosystem that supports additions of
ciphertexts and multiplications of plaintexts [11]. It achieves
semantic security against chosen-plaintext attacks (IND-CPA)
and consists of five algorithms:
• KeyGen: The algorithm generates an RSA modulus N =

pq (φ(N) = (p−1)(q−1)), where p and q are safe primes, and
outputs public key pk = N and private key sk = (q, p, λ =
Lcm(p−1, q−1)), where Lcm() is an algorithm for calculating
least common multiple;
• Encryption: The algorithm inputs a message m ∈ ZN

and pk, chooses a random number Γ ∈ Z∗
N , and outputs c =

Enc(m) = (1 +N)mΓN mod N2;
• Decryption: The algorithm inputs a ciphertext c and sk,

and outputs m = L(cλ mod N2)
L((1+N)λ mod N2)

, where L(x) = x−1
N ;

• Addition: The algorithm inputs c1 = Enc(m1) and c2 =
Enc(m2), and outputs c1 · c2 = c3 = Enc(m1 +m2);
• Multiplication: The algorithm inputs c1 = Enc(m1) and

m2 ∈ ZN , and outputs c2 = cm2
1 = Enc(m1 ·m2).
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2) Fujisaki-Okamoto Commitment: Given an RSA modulus
N , let g and h be two elements of large orders in Z∗

N , and the
discrete logarithms of g base h or vice versa are unknown, a
Fujisaki-Okamoto (FO) commitment to an integer m can be
defined as C = gmhr mod N , where r is a random number
chosen from [0, 2τN ], where τ is a security parameter [18].
The commitment has two properties:

- Statistically Hiding: C statistically reveals no informa-
tion, i.e., there exists a simulator S that can output
simulated commitments which are statistically indistin-
guishable from the real one;

- Computationally Binding: A polynomial-time adversary
cannot generate two commitments C1 = gm1hr1 and
C2 = gm2hr2 on (m1, r1) and (m2, r2), where C1 = C2

but m1 ̸= m2.
3) Zero-knowledge Proof: A zero-knowledge proof of

knowledge (ZkPoK) protocol involves two parties: a prover
and a verifier. The prover can prove to the verifier that
(x,w) ∈ R, i.e., some NP relation R is correct about a
statement x without revealing a witness w. Similar to [19],
we denote a proof as π ← ZkPoK{(w) : (x,w) ∈ R}, which
has three properties:

- Completeness: The verifier will always accept π if
(x,w) ∈ R;

- Soundness: The verifier will accept π with negligible
probability if (x,w) /∈ R, i.e, there exist a knowledge ex-
tractor who can extract the witness, w, by using rewinding
techniques.

- Zero-Knowledge: A simulator S can be constructed, who
accesses the verifier as a black box and can generate a
transcript for a true statement x. The generated transcript
is computationally indistinguishable from the real tran-
script received by the verifier.

B. Driving Safety Evaluation Model

IC uses a logistic regression (LR) model to evaluate the
driving safety of a driver in a trip as y = w⃗ · x⃗ + ϵ, where
(w⃗ = (w1, w2, ...), ϵ) are the model parameters and the model
intercept, x⃗ = (x1, x2, ...) are the driving features extracted
from the detailed driving data of the driver’s one trip, and
sigmoid(y) ∈ [0, 1] is the model classification result where
sigmoid is the Sigmoid function. sigmoid(y) ≥ 0.5 means
the driving behavior in the trip is measured to be safe (the
probability that the driver drives safely is equal to or larger
than 0.5) and sigmoid(y) < 0.5 means the opposite. The LR
model is believed to be an effective and popular model for
calculating the driving safety score based on drivers’ behavior
in existing research works [20]–[22].

Without loss of generality, Extract is a feature extraction
function used by IC, we have x⃗ = Extract(info), where info
is the time-series driving data, including the telematics data of
a trip and other information. The feature dimension is set as n,
i.e., the lengths of w⃗ and x⃗ are n. We denote ψ as a pre-defined
predicate of the model parameters, i.e., ψ(w⃗, ϵ) = 1, which
means wi ∈ [−2lw +1, 2lw−1] for i = 1 to n and ϵ ∈ [−2lϵ +
1, 2lϵ−1]. We denote ϕ as a pre-defined predicate of the driving
features, i.e., ϕ(x⃗) = 1, which means xi ∈ [−2lx +1, 2lx − 1]

P0

P1
S1

S2

S3 S4

P0’s payoff:
P1’s payoff:

+1
−1

−1
−1

+1
+1

Fig. 2. A typical game with two players P0 and P1

for i = 1 to n. With such predicates, y locates in a range of
[−2κ + 1, 2κ − 1] (κ ≥ max(lw + lx + 5, lϵ + 5)). To obtain
the PCI premium, the total number of trips that need to be
uploaded by a driver is N , i.e. the driver’s total uploaded
driving features are (x⃗1, x⃗2, ..., x⃗N ) and the driver obtains N
driving safety evaluation results (y1, y2, ..., yN ). The initial
rating of the driver behavior is set as R = 0 and for trip i, if
yi ≥ 0 (sigmoid(yi) ≥ 0.5), the trip is classified to be safe,
R = R + 1; otherwise, sigmoid(yi) < 0.5, and R = R − 1.
Supposing that the basic auto insurance quote of the driver
is Q, if R < 0, Q̂ = (1 + 20% ∗ |R|

N ) ∗ Q or if R ≥ 0,
Q̂ = (1− 25% ∗ |R|

N ) ∗Q, where Q̂ is the PCI premium1.

C. Games & Nash Equilibrium

We describe a non-cooperative game of multiple players as a
game tree in this paper. Each node in the game tree represents
a player, and routes from the root node to one leaf node denote
different strategies adopted by participating players. Each leaf
node points to the players’ payoffs which are decided by how
they choose strategies. As shown in Figure 2, two players, P0
and P1, play the game and do not cooperate. The game starts
from P0. If P0 chooses the strategy S1, the game ends, and
P0 obtains the payoff +1 while P1 gets the payoff −1. If P1
chooses the strategy S2, P1 can choose different routes with
different outcomes. In most of the realistic cases, a game runs
in a situation where players have imperfect information, i.e.,
a player does not know the actions taken by other players.

One of the most common decision-making theorems to
locate an optimal solution of a non-cooperative game is the
Nash equilibrium. With the theorem, one route of a game
tree can be found, which guarantees that each player’s payoff
is best considering other players’ strategies. When a Nash
equilibrium is reached, no one can gain more by changing
strategies if other players do not change their strategies. In
a standard multiplayer non-cooperative game, if the number
of players and the strategies of each player are finite, at least
one Nash equilibrium can be found, which may contain mixed
strategies. More detailed and formal definitions of game trees
and Nash equilibrium can be found in [23].

D. Consortium Blockchain

A consortium blockchain is a distributed service maintained
by a group of pre-selected entities (they are named moderators

1The discount percentages follow https://www.desjardinsgeneralinsurance.
com/auto-insurance/ajusto
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in our system). The blockchain mainly offer two types of
trusted services: storage service and computation service. Data
can be sent to the storage service and stored by the blockchain
to guarantee data integrity. A computer program that involves
many functions can also be outsourced to the computation
service, and the program is named “smart contract” in the
blockchain. Each function of a contract can be triggered and
executed by the blockchain, and each execution of a function
may result in some state changes of the contract, and the
changes are also updated and stored by the blockchain.

For auto insurance companies, they can easily build a
consortium blockchain for the business of car insurance by us-
ing open-source consortium blockchains such as Hyperledger
fabric. Compared with public blockchains, the consortium
blockchain has low transaction confirmation delay and high
transaction throughput, which makes it more suitable for real-
world mobile applications.

IV. PROPOSED BLOCKCHAIN-ASSISTED PERSONALIZED
CAR INSURANCE SCHEME

In this section, we propose a blockchain-assisted scheme for
achieving secure personalized car insurance (PCI). The scheme
mainly involves three high-level ideas and their detailed con-
structions: 1) designing the smart contract for achieving PCI
atop blockchain and initializing the blockchain; 2) verifiable
and privacy-preserving evaluation of a driver’s overall safety
rating based on a series of trip-based driving safety scores; and
3) a contract-based auditing method for detecting malicious
drivers.

A. Contract Design & System Setup

The core of a blockchain-assisted scheme is the design
of the contract for PCI among a driver, IC, and TPA. The
whole procedures of our scheme center around the contract
that incorporates nine functions, as shown in Figure 3.

Function Init defines a driver’s unique insurance number
(DIN), a basic auto insurance premium (Q), committed model
parameters (C⃗), encrypted model parameters (E⃗), the public
keys of IC and TPA (pk and p̂k, respectively), the required
deposit (DP) and the number of uploaded trips (N ), and the
permitted number of audits(M). Also, some parameters related
to the driver are initialized, including the serial number of
updated trips (NUM), the initial rating of the driver (R), the
personalized insurance premium (Q̂), and the state of the
driver’s PCI (STATE). There are 8 states indicating different
stages of the driver’s car insurance, and finally the states will
be transitioned to 6, 7, or 8, that implies the end, as shown
in Figure 4. IC deploys the contract into the blockchain to
trigger Init, which implies the beginning of the evaluation of
the driver’s auto premiums.

In the contract, function Deposit needs to be triggered firstly
by the driver to deposit DP into the contract. When the deposit
is completed, each time the driver drives a trip i, a transaction
consisting of the encrypted driving features (DDi), the proof of
the driving features (πDDi ), the encrypted raw driving data (DAi)
is sent to the contract, and function Record is triggered by the
driver to verify and store DDi and DAi (we use Store to denote

Init: Initialize (DIN, Q, C⃗, E⃗, pk, p̂k, DP, N , M);
Set NUM = 0, R = 0, Q̂ = Q, and STATE = 0;

Deposit: Upon receiving (DP) from Driver
Assert STATE = 0;
Deposit(DP);
STATE = 1;

Record: Upon receiving (DDi, πDDi
, DAi) from Driver

Assert NUM < N ;
Assert STATE = 1;
Assert True = Verify1(πDDi

, DDi);
Store(NUM, DDi, DAi);
NUM = NUM + 1;
If N = NUM then STATE = 2;

Evaluate: Upon receiving ({DSi}N
i=1, {πDSi

}N
i=1) from IC

Assert STATE = 2;
For i = 1 to N

If 1 = Check(DSi) then R = R + 1;
Else If True = Verify2(DDi, πDSi

, DSi):
Then R = R − 1;

If R ≥ 0 then Q̂ = (1 − 25% ∗ |R|
N ) ∗ Q;

Else Q̂ = (1 + 20% ∗ |R|
N ) ∗ Q;

STATE = 3;
Audit: Upon receiving ({NUMi}M

i=1) from IC
Assert STATE = 3;
Assert {NUMi ∈ [0,N − 1]}M

i=1;
AuditEvent({NUMi}M

i=1);
STATE = 4;

Authorize: Upon receiving ({NUM′i}
M
i=1, {DKi}

M
i=1, πDK) from Driver

Assert STATE = 4;
Assert True = Verify3(πDK, {DKi}M

i=1);
Assert {NUMi = NUM

′
i}

M
i=1;

AuthEvent({NUM′i}
M
i=1, {DKi}

M
i=1, );

STATE = 5;
Inspect: Upon receiving (RES) from TPA

Assert STATE = 5;
If True = RES then Return(DP);
Else Transfer(DP, IC);
STATE = 6;

Confirm: Upon receiving (‘confirm’) from IC
Assert STATE = 3;
Return(DP);
STATE = 7;

Quit: Upon receiving (‘quit’) from Driver
Assert STATE < 4;
Return(DP);
STATE = 8;

Fig. 3. The contract for personalized car insurance

State 0 State 1 State 2 State 3 State 4 State 5 State 6 

State 7 

Init

IC

Deposit

Driver

Record (     times)

Driver

Evaluate

IC

Audit

IC

Authorize

Driver

Inspect

TPA

Confirm

IC

State 8 

Quit

Driver

Entity

Function

State

Fig. 4. The state transitions in the contract

the procedures of storing the data in the contract). After the
encrypted driving features ofN trips are documented, function
Evaluate can be triggered by IC to generate the corresponding
overall rating of the driver (R) and the personalized auto
insurance premium (Q̂). To trigger the function, IC needs to
send the transaction involving the private results of driving
safety scores of N trips and the proof of the private results,
{DSi}Ni=1 and {πDSi}Ni=1, to the contract.

The premium (Q̂) is not confirmed yet. IC will follow
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TABLE I
THE FUNCTIONS DEFINED IN THE CONTRACT

Function Description

Init IC initializes the car insurance contract (STATE 0)
Deposit Driver deposits the money (STATE 0 → 1)
Record Driver reports driving data (STATE 1 → 2)

Evaluate IC evaluates the car insurance (STATE 2 → 3)
Audit IC starts the process of auditing (STATE 3 → 4)

Authorize Driver authorizes the auditing (STATE 4 → 5)
Inspect TPA ends the contract with auditing (STATE 5 → 6)
Confirm IC ends the contract without auditing (STATE 3 → 7)

Quit Driver ends the contract through quitting (STATE 0 ∼ 3 → 7)

the contract-based auditing method defined in Section IV-C,
and can choose to either trigger function Confirm to confirm
the premium without auditing or trigger function Audit to
initialize an auditing event (we use AuditEvent to represent
the procedures of starting an audit event in the contract) to
audit uploaded driving data of up to M trips. If IC would
like to audit the uploaded data by triggering Audit, IC can
send the serial numbers of the chosen M trips, {NUMi}Mi=1 to
the contract. If the audit event is received, the driver should
also trigger function Authorize to authorize the auditing event
posted by IC. Similar to the transaction sent by IC, the driver
also needs to send the serial numbers of the chosen M
trips, {NUM′i}Mi=1, the authorization keys, {DKi}Mi=1, and the
proof of authorization keys, πDK, to the contract and trigger
an authorization event (we use AuthEvent to represent the
procedures of starting an authorization event in the contract).
After receiving the audit event and the authorization event,
by using the authorization keys and its private key, TPA can
recover the raw driving data of up to M trips and detect
whether the trips are real or fabricated, and trigger function
Inspect to report the result and end the contract. Without
auditing, IC can directly trigger function Confirm by sending
‘confirm’ and end the contract. According to the contract,
when no malicious behavior is detected, Q̂ is confirmed and
the deposit will be return (Return); otherwise, the driver will
be punished by losing the deposit. The driver can also choose
to quit the contract by sending ‘quit’ to trigger function Quit
before the auditing happens. We summarize the descriptions
of the functions in TABLE I.

In addition to these functions, there are other redundant
functions such as making written data accessible and readable
and allowing the driver or IC to end the contract in case of
timeout. Since these functions are trivial, we omit them for
brevity. In the contract, we use Verify1 and Verify2 to denote
two verification algorithms that verify the zero-knowledge
proofs of the correctness of encrypted driving features and
the driver’s driving safety scores, and use Check to denote
the checking algorithm that rates a trip-based driving safety
score as high or low. How to encrypt the driving features and
the raw driving data, the proofs, the verifications algorithms
(a.k.a. zero-knowledge proofs), and the checking algorithm are
not discussed here and will be given in Section IV-B and IV-C.

One-time Setup: Before IC deploys the contract for drivers,
some public parameters need to be negotiated once among
drivers, IC, and TPA, including a security parameter τ ,
an RSA modulus N = pq where p and q are two safe

πParams ← ZkPoK
{
(w⃗, ϵ, {ri}n+1

i=1 , {Γi}n+1
i=1 ) : ψ(w⃗, ϵ) = 1

∧ {Ci = gwihri}ni=1 ∧ Cn+1 = gϵhrn+1

∧ {Ei = (1 +N)wiΓN
i }ni=1 ∧ En+1 = (1 +N)ϵΓN

n+1

}
.

Fig. 5. Proof of the correctness of committed and encrypted model parameters

primes, two elements of large orders in Z∗
N , g ∈ Z∗

N and
h ∈ Z∗

N , a symmetric-key encryption/decryption algorithm
SEnc(·)/SDec(·), and a public key encryption/encryption al-
gorithm PEnc(·)/PDec(·).

Note that, the discrete logarithms of g base h or vice versa
are unknown to drivers, IC, and TPA. The factorization of N
should be only known to IC and unknown to drivers and TPA.
For this purpose, our scheme can rely on DMs to generate
and publish N , g, and h, and shares two safe primes, p and q,
with IC in a decentralized setting [24], [25]. The bit length
of N is ζ. Based on the parameters, IC can generate and
publish its public key, pk = N , and keep its private key
sk = (q, p, λ = Lcm(p − 1, q − 1)). IC additionally chooses
2(n + 1) random numbers {ri}n+1

i=1 and {Γi}n+1
i=1 , where

ri ∈ [0, 2τN) and Γi ∈ (0, N). IC then generate the com-
mitted model parameters, C⃗ = (C1, C2, ..., Cn, Cn+1), and
the encrypted model parameters, E⃗ = (E1, E2, ..., En, En+1),
where Ci = gwihri mod N and Ei = (1+N)wiΓN

i mod N2

for i = 1, 2, ..., n and Cn+1 = gϵhrn+1 mod N and En+1 =
(1 + N)ϵΓN

n+1 mod N2. A corresponding zero knowledge
proof, πParams can be constructed and verified publicly, as
shown in Figure 5, whose objective is to certify the model
parameters are correct formed and consistent with ψ. TPA
also publishes its public key p̂k, and keep its private key ŝk.

B. Privacy-preserving Evaluation of Drivers’ Behavior

A driver’s overall rating (R) is determined by N driv-
ing safety scores received by the driver ({yi}Ni=1). Hence,
privacy-preserving evaluation of R means secure calculations
of {yi}Ni=1 without exposing w⃗, ϵ, and {x⃗i}Ni=1, where {x⃗i}Ni=1

are the driver’s driving features of N trips. A straightforward
idea is to utilize Paillier homomorphic encryption to achieve
secure calculations of {yi}Ni=1. However, as the relationship
among yi, w⃗, x⃗i, and ϵ is linear, a malicious driver can
easily extract w⃗ and ϵ since yi is deterministic based on x⃗i,
if n + 1 driving safety scores {yi}n+1

i=1 is revealed based on
Gaussian elimination. To hide the relationship among yi, w⃗,
x⃗i, and ϵ, our idea is to disclose a randomized value of yi,
δi = αi(aiyi+ bi)+βi, where αi and βi are random numbers
chosen by IC and ai and bi are random numbers chosen by the
driver. By carefully selecting the bit lengths of (αi, βi, ai, bi),
δi only shows whether yi ≥ 0 or yi < 0 for trip i, which is
sufficient to determine the updates of R. To achieve the goal,
we design a privacy-preserving driving behavior evaluation
protocol between the driver and IC, as shown in Protocol 1. In
the protocol, a driver will report DDi and DAi for trip i, and IC
will monitor the contract until enough data are collected, and
evaluate the encrypted driving features to obtain the driver’s
overall safety rating and auto premium.
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Protocol 1 Privacy-preserving Evaluation of Driving Behavior
1: (Driver) Reporting Driving Data (Trip i for i = 1 to N ):

1) chooses a random number ri whose bit length is lr (lr > κ);
2) calculates Ei, the Paillier ciphertext of w⃗ · x⃗i + ϵ+ ri:

Ei =

n∏
j=1

E
xi,j

j · En+1 · (1 +N)ri mod N2;

3) chooses two random numbers ai and bi whose bit lengths
are la and lb, respectively (lb > κ);

4) calculates r′i = airi, and computes E ′
i , the Paillier cipher-

text of ai(w⃗ · x⃗i + ϵ+ ri)− airi + bi = aiyi + bi:

E ′
i = Eai

i · (1 +N)−r′i · (1 +N)bi mod N2;

5) chooses a random number vi ∈ [0, 2τN), calculates v′i =
aivi, and commits to ri and r′i as comi = grihvi and
com′i = gr

′
ihv′

i ;
6) sets DDi = (Ei, E ′

i , comi, com
′
i) and generates the proof

πDDi ;
7) chooses a symmetric key ki, and encrypts x⃗i||infoi as

cti = SEnc(ki, (x⃗i||infoi)), where infoi is the raw driving
data of the trip;

8) sets DAi = cti, and sends (DDi, πDDi , DAi) to trigger
function Record.

2: (IC) Evaluating Driving Safety (All N trips):
1) downloads {i, E ′

i}Ni=1 for i = 1 to N ;
2) chooses 2N random numbers {αi, βi}Ni=1, and the bit

lengths of αi and βi (for i = 1 to N ) are lα and lβ
(lβ > la + κ);

3) calculates Ei = (E ′
i)

αi(1 +N)βi for i = 1 to N ;
4) decrypts Ei using λ to obtain mi = αi(aiyi + bi) + βi =

αiaiyi + αibi + βi for i = 1 to N ;
5) chooses a random number, Υi ∈ (0, N), and encrypts mi

as Ui = (1 +N)miΥN
i mod N2 for i = 1 to N ;

6) calculates Di = Ei · U−1
i = ZN

i mod N2 for i = 1 to N ;
7) extracts Zi from Di, i.e., Zi = DN−1 mod φ(N)

i mod N
for i = 1 to N , where φ(·) is the Euler function;

8) sets DSi = (mi,Ei,Ui,Di) and generates the proof πDSi

for i = 1 to N ;
9) sends ({DSi}Ni=1,{πDSi}Ni=1) to trigger function Evaluate.

πDDi ← ZkPoK
{
(x⃗i, ri, r

′
i, ai, bi, vi, v

′
i, Γ̂i,Γi) : ϕ(x⃗i) = 1

∧ comi = grihvi ∧ com′i = comai
i = gr

′
ihv

′
i

∧ Ei =
n∏

j=1

E
xi,j

j · En+1 · (1 +N)ri

∧ E ′i = Eai
i · (1 +N)−r′i · (1 +N)bi ∧ ri ∈ [2lr−1, 2lr − 1]

∧ ai ∈ (2la−1, 2la − 1] ∧ bi ∈ (2lb−1, 2lb − 1]
}
.

Fig. 6. Proof of the correctness of encrypted driving features that can be
verified by Verify1 algorithm

Considering that the driver and IC may behave maliciously
in the protocol, zero-knowledge proof is applied to guarantee
that the driver and IC do not deviate from the protocol. From
the driver side, a zero-knowledge proof protocol is designed,
πDDi , as shown in Figure 6, which can be verified to ensure
that Ei is a valid Paillier ciphertext that is calculated correctly
based on the driver’s logistic regression model (yi = w⃗ ·x⃗i+ϵ)
and E ′i can be decrypted by IC to obtain aiyi+bi for trip i. As

πDSi ← ZkPoK
{
(αi, βi,Υi, Zi) : Di = ZN

i

∧ Ei = (E ′i)αi(1 +N)βi ∧ Ui = (1 +N)miΥN
i

∧ αi ∈ (2lα−1, 2lα − 1] ∧ βi ∈ (2lβ−1 , 2lβ − 1]
}
.

Fig. 7. Proof of the correctness of driving safety scores that can be verified
by Verify2 algorithm

IC holds the private key, sk, Figure 6 is not straightforward.
Our idea is to introduce a random number, ri, into the proof
and use ri to hide the private driving safety score yi of trip i.
Our design first enables the driver to prove Ei is a valid Paillier
ciphertext of yi+ri, and then allows the driver to prove that E ′i
is another valid Paillier ciphertext of aiyi + bi that eliminates
ri from Ei and adds two addition random numbers, (ai, bi). By
doing so, IC can only decrypt Ei and E ′i to obtain the random
values, yi + ri and aiyi + bi.

Another zero-knowledge proof is designed for IC, πDSi , as
shown in Figure 7, which can be verified to show that Ei is a
valid Paillier ciphertext that encrypts αiaiyi + αibi + βi and
mi = αiaiyi+αibi+βi. To prove that mi is the exact plaintext
without exposing IC’s private key, two additional ciphertexts,
Ui and Di, are introduced, where U is a new Paillier ciphertext
that encrypts mi and Di is the multiplication of Ei and U−1.
Based on Paillier’s homomorphic property, if mi = αiaiyi +
αibi+βi, we have Di = ZN

i mod N2, where Zi is a random
number located in (0, N). Using the private key, IC can extract
Zi, and conduct the proof, πDSi . The random value, mi =
αiaiyi + αibi + βi, can be used for testing whether yi ≥ 0
or yi < 0 if αi and βi follows some settings. When yi ≥ 0,
mi mod N is a random value whose bit length is much smaller
than ζ, and the checking algorithm, Check, output 1; otherwise
the value’s bit length is close to ζ, and Check outputs 0.

Instantiations of πParams, πDDi , πDSi : The proposed three
zero-knowledge proofs can be efficiently instantiated using the
Sigma-protocol and can be securely transformed to the non-
interactive zero-knowledge proofs using Fiat-Shamir heuristic
in the random oracle model. We can achieve efficient range
proofs for w⃗, ϵ, {x⃗i}Ni=1, {ai}Ni=1, {bi}Ni=1, {αi}Ni=1, and
{βi}Ni=1, by using the techniques proposed in [26].

Correctness Analysis: The proposed protocol is correct
when parameters are selected properly. Since our protocol
is constructed based on Paillier cryptosystem, the inputs and
outputs of the calculations in the protocol should be in the field
Z∗
N . Therefore, the following conditions should be satisfied:

lr << ζ, κ << ζ, la + κ << ζ, lb << ζ, lα + la + κ << ζ,
lα + lb << ζ, and lβ << ζ. Moreover, to guarantee that the
final result of the evaluation model, mi = αiaiyi +αibi + βi,
can be correctly decrypted from the Paillier ciphertext, we
need to set la > lb, and lα > lβ . Under the circumstance, we
have Len(mi) ≈ ζ if yi < 0 and Len(mi) << ζ if yi ≥ 0,
where Len(mi) denotes the bit length of mi. In addition, the
proposed protocol correctly calculates yi in ciphertext by using
the homomorphic property of Paillier cryptosystem, e.g., Ei is
the ciphertext of yi + ri, which can be easily verified.
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Driver

IC IC

<latexit sha1_base64="Y+t5Ju3B4OSgnfsZZY3nwcAr87A=">AAACRHicbZDLSiNBFIarvRtvGWfp5mAQFDF0S9BZirpwGcGokA6hunI6KayubqpOC6HJw81mHsDdPMFsXDiIW7ESe6HGAwU/37nWH2VKWvL9v97M7Nz8wuLScmVldW19o/pj89qmuRHYEqlKzW3ELSqpsUWSFN5mBnkSKbyJ7s7G+Zt7NFam+oqGGXYS3tcyloKTQ91qO1QY024FIIywL3XBjeHDUSFGAOAowEGYcBoQFefNEYThhO1PsRB1r+ythEb2B7QH3WrNr/uTgGkRlKLGymh2qw9hLxV5gpqE4ta2Az+jjhtLUih0g3OLGRd3vI9tJzVP0HaKiQkj2HGkB3Fq3NMEE/qxo+CJtcMkcpXj4+3X3Bh+l2vnFP/qFFJnOaEW74viXAGlMHYUetKgIDV0ggsj3a0gBtxwQc73ijMh+PrlaXF9WA+O6o3LRu3ktLRjiW2xbbbLAnbMTtgFa7IWE+w3+8ee2H/vj/foPXsv76UzXtnzk30K7/UNo5atvw==</latexit>✓
�DP
+DP

◆

<latexit sha1_base64="C1IWhiT1cpcj4fEhHYxjGIRHFnM=">AAACDnicbVA9SwNBEN3zM8avqKXNYgjEwnAnQS0DaawkgvmAXAh7m0myZO+D3TkxHPkFNv4VGwtFbK3t/Ddukis08cHA470ZZuZ5kRQabfvbWlldW9/YzGxlt3d29/ZzB4cNHcaKQ52HMlQtj2mQIoA6CpTQihQw35PQ9EbVqd+8B6VFGNzhOIKOzwaB6AvO0EjdXMFFeMDkJkRaHQLDCXXdbNE5c32GQ85kUpt0xWk3l7dL9gx0mTgpyZMUtW7uy+2FPPYhQC6Z1m3HjrCTMIWCS5hk3VhDxPiIDaBtaMB80J1k9s6EFozSo/1QmQqQztTfEwnztR77numcXqkXvan4n9eOsX/VSUQQxQgBny/qx5JiSKfZ0J5QwFGODWFcCXMr5UOmGEeTYNaE4Cy+vEwa5yXnolS+LecrxTSODDkmJ6RIHHJJKuSa1EidcPJInskrebOerBfr3fqYt65Y6cwR+QPr8we7IJsy</latexit>

Not Cheat

(1� Pi)

<latexit sha1_base64="nKbWmdg4biRWWFv9Df6iKlyBbZs=">AAACBXicbVC7SgNBFJ31mcRX1FKLwSDEJuyKqGUgjeWK5gFJCLOTm2TI7IOZu2Jc0tj4KzYWitj6AXYWgn/j5FFo4oELh3Pu5d57vEgKjbb9bS0sLi2vrKbSmbX1jc2t7PZORYex4lDmoQxVzWMapAigjAIl1CIFzPckVL1+aeRXb0BpEQbXOIig6bNuIDqCMzRSK7vfQLjFpNQDhkOab/gMe5zJxB22xFErm7ML9hh0njhTkium7r4+rty028p+Ntohj30IkEumdd2xI2wmTKHgEoaZRqwhYrzPulA3NGA+6GYy/mJID43Spp1QmQqQjtXfEwnztR74nukcXalnvZH4n1ePsXPeTEQQxQgBnyzqxJJiSEeR0LZQwFEODGFcCXMr5T2mGEcTXMaE4My+PE8qxwXntHByadLIkwlSZI8ckDxxyBkpkgvikjLh5J48kmfyYj1YT9ar9TZpXbCmM7vkD6z3H3fYm3I=</latexit>

Cheat(Pi)

<latexit sha1_base64="s84Z+4TtMoojfg9W/ZBR0HHFbps=">AAACC3icbVA9SwNBEN2LX0n8ilraLAlCbMKdiFpGbCxPNB+QC8fe3iZZsvfB7pwYj+tt/Cs2ForYWtlZCP4bN4mFJj4YeLw3w8w8LxZcgWl+GbmFxaXllXyhuLq2vrFZ2tpuqiiRlDVoJCLZ9ohigoesARwEa8eSkcATrOUNz8Z+65pJxaPwCkYx6wakH/IepwS05JbKDrAbSE8Tn0OGq86AQOoEBAaUiNTOMpfvu6WKWTMnwPPE+iGVev728/3SLthu6cPxI5oELAQqiFIdy4yhmxIJnAqWFZ1EsZjQIemzjqYhCZjqppNfMrynFR/3IqkrBDxRf0+kJFBqFHi6c3ymmvXG4n9eJ4HeSTflYZwAC+l0US8RGCI8Dgb7XDIKYqQJoZLrWzEdEEko6PiKOgRr9uV50jyoWUe1wwudRhVNkUe7qIyqyELHqI7OkY0aiKI79ICe0LNxbzwaL8brtDVn/MzsoD8w3r4BoQmeUQ==</latexit>

Audit(P̂i)
<latexit sha1_base64="s84Z+4TtMoojfg9W/ZBR0HHFbps=">AAACC3icbVA9SwNBEN2LX0n8ilraLAlCbMKdiFpGbCxPNB+QC8fe3iZZsvfB7pwYj+tt/Cs2ForYWtlZCP4bN4mFJj4YeLw3w8w8LxZcgWl+GbmFxaXllXyhuLq2vrFZ2tpuqiiRlDVoJCLZ9ohigoesARwEa8eSkcATrOUNz8Z+65pJxaPwCkYx6wakH/IepwS05JbKDrAbSE8Tn0OGq86AQOoEBAaUiNTOMpfvu6WKWTMnwPPE+iGVev728/3SLthu6cPxI5oELAQqiFIdy4yhmxIJnAqWFZ1EsZjQIemzjqYhCZjqppNfMrynFR/3IqkrBDxRf0+kJFBqFHi6c3ymmvXG4n9eJ4HeSTflYZwAC+l0US8RGCI8Dgb7XDIKYqQJoZLrWzEdEEko6PiKOgRr9uV50jyoWUe1wwudRhVNkUe7qIyqyELHqI7OkY0aiKI79ICe0LNxbzwaL8brtDVn/MzsoD8w3r4BoQmeUQ==</latexit>

Audit(P̂i)
<latexit sha1_base64="OYvPHY6L9icHwImEqiNObnGFZ8c=">AAACFHicbVDLSsNAFJ3UV42vqks3g0WoiCWRoi4rblxJBfuAJoTJZNoOnTyYuRFLyEe48VfcuFDErQt3/o3Tx0KrBy4czrmXe+/xE8EVWNaXUVhYXFpeKa6aa+sbm1ul7Z2WilNJWZPGIpYdnygmeMSawEGwTiIZCX3B2v7wcuy375hUPI5uYZQwNyT9iPc4JaAlr3TkALuH7DoGfJEGHHLsOGbFPnYGBDInJDCgRGSNPPf4oVcqW1VrAvyX2DNSRjM0vNKnE8Q0DVkEVBCluraVgJsRCZwKlptOqlhC6JD0WVfTiIRMudnkqRwfaCXAvVjqigBP1J8TGQmVGoW+7hyfqea9sfif102hd+5mPEpSYBGdLuqlAkOMxwnhgEtGQYw0IVRyfSumAyIJBZ2jqUOw51/+S1onVfu0WrupleuVWRxFtIf2UQXZ6AzV0RVqoCai6AE9oRf0ajwaz8ab8T5tLRizmV30C8bHN/O9nhE=</latexit>

Not Audit

(1� P̂i)

<latexit sha1_base64="OYvPHY6L9icHwImEqiNObnGFZ8c=">AAACFHicbVDLSsNAFJ3UV42vqks3g0WoiCWRoi4rblxJBfuAJoTJZNoOnTyYuRFLyEe48VfcuFDErQt3/o3Tx0KrBy4czrmXe+/xE8EVWNaXUVhYXFpeKa6aa+sbm1ul7Z2WilNJWZPGIpYdnygmeMSawEGwTiIZCX3B2v7wcuy375hUPI5uYZQwNyT9iPc4JaAlr3TkALuH7DoGfJEGHHLsOGbFPnYGBDInJDCgRGSNPPf4oVcqW1VrAvyX2DNSRjM0vNKnE8Q0DVkEVBCluraVgJsRCZwKlptOqlhC6JD0WVfTiIRMudnkqRwfaCXAvVjqigBP1J8TGQmVGoW+7hyfqea9sfif102hd+5mPEpSYBGdLuqlAkOMxwnhgEtGQYw0IVRyfSumAyIJBZ2jqUOw51/+S1onVfu0WrupleuVWRxFtIf2UQXZ6AzV0RVqoCai6AE9oRf0ajwaz8ab8T5tLRizmV30C8bHN/O9nhE=</latexit>

Not Audit

(1� P̂i)

Driver’s payoff:
IC’s payoff:

<latexit sha1_base64="k8WZSf7tC8wR33F1ySzdWHxqqs8=">AAACiXicnVHBbtQwEHUClDYFusCxF4sFaSvaVYJKqThV6oULqIhuW2m9Wk28k12rjhPZE6RVlH/hm7j1b+rsRhW0nBjJ0pv3Zuzxm7TUylEc3wTho8dPNp5ubkXbz56/2Om9fHXhispKHMlCF/YqBYdaGRyRIo1XpUXIU42X6fVpq1/+ROtUYc5pWeIkh7lRmZJAnpr2fgmNGQ1EinNlarAWlk2tm+hAnC+QYCByoIUEXX9rpuog2b/Lv65zfkf88MQeFyJ6//+tAs2sG0JYNV/QXjTt9eNhvAr+ECQd6LMuzqa932JWyCpHQ1KDc+MkLmnibyUlNTaRqByWIK9hjmMPDeToJvXKyYa/88yMZ4X1xxBfsX921JA7t8xTX9kO7+5rLfkvbVxRdjyplSkrQiPXD2WV5lTwdi18pixK0ksPQFrlZ+VyARYk+eW1JiT3v/wQXHwYJkfDw++H/ZO3nR2bbJe9YQOWsE/shH1hZ2zEZLAR7Acfg6NwO0zC4/DzujQMup7X7K8IT28BnObDtQ==</latexit>✓
�⇥(Ni � 1, Mi � 1, Si)
+⇥(Ni � 1, Mi � 1, Si)

◆<latexit sha1_base64="Mv+ZXNHiaIV9DAoUUTnQ3khLYIY="></latexit>✓
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Fig. 8. The sequential game of determining whether to cheat (Driver) or audit
(IC) on trip i (for i = 1 to N )

C. Contract-based Auditing

After a driver’s personalized auto premium is calculated, IC
should determine whether to audit the driving data uploaded
by the driver, and we design a new auditing method based on
a recursive inspection game [27]. The auditing process can
be viewed as a sequential game between a driver and IC.
Specifically, since the number of total uploaded trips is N ,
we require IC can only auditM trips and try to minimizeM
to achieve our goal.

We can describe the game between IC and a driver in
extensive form with imperfect information, which is a game
tree as shown in Figure 8. The game is a non-cooperative zero-
sum sequential game that involves N stages (corresponding to
N trips uploaded by the driver, i = 1 to N ), and the game
tree shows the actions of IC and the driver and the payoffs
of IC and the driver. For trip i, the driver may cheat with the
probability, Pi ∈ [0, 1], and may not cheat with (1 − Pi). IC
may choose to audit the trip with the probability, P̂i ∈ [0, 1],
and may not audit with (1 − P̂i). Ni, Mi, and Si are three
variables that indicates the number of needed trips, permitted
auditing actions, and the number of intended cheats before
trip i’s data is uploaded, i.e., N1 = N , M1 = M, and
S1 = S ∈ [0,N − M]. For the most cautious (malicious)
drivers, S = 1 and for the most aggressive (malicious) drivers,
S = N − M. The payoff of IC before the driver uploads
the driving data of trip i can be denoted as a function,
Θ(Ni,Mi,Si). If trip i is cheated and is audited, according
to Figure 4, the game will end immediately and the deposit
of the driver, DP, will be transferred to IC. If the driver
successfully makes a cheat without being audited at trip i,
the payoff of IC is updated as Θ(Ni − 1,Mi,Si − 1) − χ,
where χ is the reward of each cheat behavior. In our model,
χ = 25% ∗ 1

N ∗ Q + 20% ∗ 1
N ∗ Q and DP = η · χ,

where η is a positive number determined by IC. When the
driver does not cheat at trip i, if IC makes an audit, the
payoff is Θ(Ni − 1,Mi − 1,Si); otherwise, the payoff is
Θ(Ni−1,Mi,Si). Since the game is zero-sum, the payoff of
the driver is the opposite. For concise expression of equations
in the following calculations, we denote Θ(Ni−1,Mi−1,Si)
by µi,1, denote Θ(Ni − 1,Mi,Si − 1) by µi,2, and denote
Θ(Ni − 1,Mi,Si) by µi,3.

Based on the adversarial model, the game can lead to a
unique mixed Nash equilibrium where both players choose
their actions with fixed positive probabilities. For the stage that
the driver uploads the driving data of trip i, the equilibrium

choice of P̂i is to make the driver’s payoff indifferent no matter
whether the driver chooses to cheat or not, i.e.,

P̂i · (−µi,1) + (1− P̂i) · (−µi,3)

= P̂i · (−DP) + (1− P̂i) · (−µi,2 + χ); (1)

similarly, the equilibrium choice of Pi is to make IC’s payoff
indifferent no matter whether IC chooses to audit or not, that
is,

Pi · (µi,2 − χ) + (1− Pi) · µi,3

= Pi · DP+ (1− Pi) · µi,1. (2)

Based on two equations above, we can calculate the probability
of auditing as

P̂i =
µi,3 − µi,2 + χ

µi,3 − µi,2 + χ+ DP− µi,1

= f ′(Ni,Mi,Si, χ, DP), (3)

and

Pi =
µi,3 − µi,1

µi,3 − µi,2 + χ+ DP− µi,1

= f(Ni,Mi,Si, χ, DP). (4)

Both sides of Equation 2 denote IC’s payoff Θ(Ni,Mi,Si),
and we substitute Pi to obtain

Θ(Ni,Mi,Si) =
DP · µi,3 + χ · µi,1 − µi,1µi,2

µi,3 − µi,2 + χ+ DP− µi,1
. (5)

Based on Theorem 1 in [27], for Ni >Mi > 0 and Si > 0,
we can get

Θ(Ni,Mi,Si) =
−∑Si

j=1 χ ·
(Ni−j

Mi

)
∑Mi

j=0 DP
Mi−j ·

(Ni

j

) . (6)

The objective of our auditing method is to adjust M and
DP and find the appropriate M and DP that minimizes Pi.
Equation 4 shows that Pi is function f() ofNi,Mi, Si, χ, and
DP, i.e., P1 = f(N1,M1,S1, χ, DP), if we substitute µi,1, µi,2,
and µi,3 with Θ(Ni− 1,Mi− 1,Si), Θ(Ni− 1,Mi,Si− 1),
and Θ(Ni − 1,Mi,Si) based on Equation 6. Obviously, the
function is monotonic withMi and DP, and thus the minimum
of Pi means the maximum of Mi and DP.
P̂i is a function f ′() of Ni, Mi, Si, χ, and DP based

on Equation 3 (P̂i = 0 if Mi = 0), i.e., P̂i =
f ′(Ni,Mi,Si, χ, DP), and IC can create a randomness algo-
rithm Randomi(P̂i) that returns 1 with P̂i and 0 otherwise.
IC then follows Algorithm 1 to generate its auditing strate-
gies based on probabilities. Although IC does not have the
information about the left number of the malicious driver’s
attempts, S, to report fabricated driving data, IC can make
a reasonable assumption that a malicious driver will set
Si ∈ [0,Ni −Mi], because the malicious behavior will be
detected if Si > Ni−Mi. Therefore, IC can set S = N −M
in the real implementation. The algorithm finally outputs
{NUMj}Mj=1. If NUMj = 0 for j = 1 to M, IC sends ‘confirm’
to trigger function Confirm without auditing; otherwise, IC
sends {NUMj}Mj=1 to trigger function Audit. According to the
contract, the driver needs to authorize the auditing requests by
sending ({NUM′j}Mj=1, {DKj = PEnc(p̂k, kNUM′j )}

M
j=1), and πDK,
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Algorithm 1 AuditSelection
Input: N , M, S, χ, DP;
Output: {NUMj}Mj=1;

1: N1 = N , M1 = M, S1 = S;
2: for j = 1 → M do
3: NUMj = 0;
4: end for
5: j = 1;
6: for i = 1 → N do
7: P̂1 = f ′(Ni,Mi,Si, χ, DP);
8: if 1 == Randomi(P̂i) then
9: NUMj = i, j = j + 1, Mi+1 = Mi − 1;

10: else if 0 == Randomi(P̂i) then
11: Mi+1 = Mi;
12: end if
13: Ni+1 = Ni − 1;
14: if Si > Ni+1 −Mi+1 then
15: Si+1 = Ni+1 −Mi+1

16: else if Si ≤ Ni+1 −Mi+1 then
17: Si+1 = Si

18: end if
19: if M == j then
20: break;
21: end if
22: end for
23: Output {NUMj}Mj=1;

πDK ← ZkPoK
{
({kNUMj}Mj=1}) :

{DKj = PEnc(p̂k, kNUMj )}Mj=1

}
.

Fig. 9. Proof of the correctness of encrypted authorization keys that can be
verified by Verify3 algorithm

as shown in Figure 9, by triggering Authorize. Then, TPA can
decrypt {ctNUMj}Mj=1 to obtain detailed driving data of trips,
audit the data, and report the auditing result to end the contract
by triggering Inspect. The whole auditing procedures are
public and authorized by drivers and IC such that permission-
based audit can be achieved.

V. SECURITY ANALYSIS

A. Simulation-based Security Analysis

We use a simulation-based approach to capture the security
notions of our proposed scheme, including driver privacy,
model privacy, and verifiability, and transparency [28]. The
idea is to prove that, a real world where drivers, DMs, IC,
and TPA execute the proposed scheme, is computationally
indistinguishable from an ideal world where the same players
achieve the same functions relying on a trusted party, T . In
other words, the ideal world is built that fulfills all desirable
security properties, and we also construct a simulator as an
ideal-world adversary, S, who externally communicates with
T and honest players in the ideal world, and also pretends to
be honest players and internally executes the proposed scheme
with a real-world adversary, A. If A cannot computationally
distinguish the inputs and the outputs of the “simulated” world
and the real world, it indicates that A obtains no information
except the information leaked in the ideal world. In our proof,

we consider a static model where malicious drivers, IC, and
DMs are fixed.

Four main phases in our proposed scheme require private
inputs from drivers and IC according to Figure 4, and these
inputs affect the outputs. Thus, we focus on constructing the
ideal functionalities of these four phases in the ideal world by
relying on T : 1) setup phase; 2) recording phase; 3) evaluation
phase; and 4) authorization phase:

• Phase-1: (Real world) IC generates and publishes (E⃗, C⃗,
πparams). (Ideal world) IC needs to submit w⃗ and ϵ to T ,
and T verifies the consistency of the model parameters;

• Phase-2: (Real world) Drivers upload (DDi, πDDi , DAi) to
the blockchain and the blockchain accepts or rejects the
report. (Ideal world) Drivers submit x⃗i to T , and T can
judge the correctness of x⃗i with acceptance or rejection.

• Phase-3: (Real world) IC submits ({DSi}Ni=1, {πDSi}Ni=1)
to the blockchain and the blockchain calculates and
publishes R and Q̂. (Ideal world) As T knows all
information, IC only needs to trigger T and T calculates
R and Q̂ in plaintext and publish how R and Q̂ are
calculated for each trip.

• Phase-4: (Real world) Drivers submit {DKj}Mi=1 and πDK
to the blockchain, and TPA uses {DKi}Mi=1 to audit
the driving data and submit the auditing result to the
blockchain. (Ideal World) Drivers submits {infoNUM′j}

M
j=1

to T who can audit and publish the auditing result.

According to the ideal functionalities, we can easily con-
clude that the ideal world provides all desirable security
properties. Assuming that D is a probabilistic polynomial-time
(PPT) algorithm used for distinguishing the ideal world and
the real world controlled by A (D outputs 1 when running in
the real world), RealA and IdealS are the views (inputs and
outputs) of the real execution of our proposed scheme and the
“simulated” execution, respectively, we can have the following
definition of security for our scheme:

Definition 1 (Security): Our proposed scheme is secure if
for all PPT algorithms D, the following expression holds:

|Pr[D(RealA) = 1]− Pr[D(IdealS) = 1]| = negl(τ, ζ),

where Pr[·] is the probability function and negl(τ, ζ) denotes
a negligible function in security parameters (τ, ζ).

We analyze the security of our proposed scheme by prov-
ing the above equation holds when the following condi-
tions are satisfied: 1) ZkPoK is simulation-extractable zero-
knowledge proof of knowledge in the random oracle model;
2) FO commitment is statistically hiding and computation-
ally binding; 3) Paillier cryptosystem is semantic secure; 4)
PEnc(·)/PDec(·) is a semantic secure public-key cryptosys-
tem; 5) SEnc(·)/SDec(·) is a secure symmetric-key cryptosys-
tem; and 6) lr > κ, lb > κ, and lβ > la + κ.

The security proofs are categorized into two cases since
different players are controlled by A. In case-1, A controls
drivers and a subset of DMs, and intend to compromise model
privacy. In case-2, A controls IC and a subset of DMs, whose
target is driver privacy. We sketch how S can be constructed
in two cases.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2022.3215811

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of New Brunswick. Downloaded on January 10,2023 at 22:32:52 UTC from IEEE Xplore.  Restrictions apply. 



10

(Case-1) S internally simulates the proposed scheme by
representing honest IC to A, and externally communicates
with T in the ideal world as malicious drivers:

• Phase-1: S randomly chooses n + 1 model parameters
(w⃗′ = (w′

1, w
′
2, ..., w

′
n), ϵ

′) which satisfies ψ(w⃗′, ϵ′) = 1,
and encrypts w⃗′ and ϵ′ as E⃗′ = (E′

1, E
′
2, ..., E

′
n, E

′
n+1)

where E′
i is a valid Paillier ciphertext using N . Similarly,

S can construct C⃗ ′ = (C ′
1, C

′
2, ..., C

′
n, C

′
n+1) where C ′

i is
a valid FO commitment. S can use the zero-knowledge
simulator to simulate the proof, π′

Params, and publishes
(E⃗′, C⃗ ′, π′

Params) internally to A;
• Phase-2: By interacting A internally, S stores cti and

extracts x⃗i using the knowledge extractor of the proof
πDDi , and submits x⃗i to T for i = 1 to N in the ideal
world;

• Phase-3: S retrieves the evaluation results of personalized
auto insurance premium (R′, Q̂′) from T in the ideal
world, and accordingly construct DS′i. For trip i, if yi ≥ 0,
S chooses a random number γi whose bit length is
chosen uniformly between (lα + la, lα + la + κ) and sets
m′

i = γi; otherwise, m′
i = −γi mod N . S then randomly

chooses α′
i ∈ (2lα−1, 2lα − 1], β′

i ∈ (2lβ−1, 2lβ − 1], and
Γ′
i ∈ (0, N), and generates Paillier ciphertexts E′

i, U ′
i , D′

i

based on (α′
i, β

′
i,m

′
i,Γ

′
i). S sets DS′i = (m′

i,E
′
i,U ′

i ,D′
i)

and uses the zero-knowledge simulator to simulate the
proof, π′

DSi
for i = 1 to N ;

• Phase-4: S extracts ki using the knowledge extractor of
the proof πDK, and use kNUM′j to decrypt ctNUM′j to recover
infoNUM′j for j = 1 to M.

Analysis of Case-1: For phase-1, if D can distinguish
RealA = (E⃗, C⃗, πParams) and IdealS = (E⃗′, C⃗ ′, π′

Params), it
means D can be used to break the semantic security of Paillier
cryptosystem, the statistically hiding property of the FO com-
mitment, and the zero-knowledge property of ZkPoK, which
happens with negligible probability. For phase-2 and phase-
3, if D can distinguish RealA = ({DSi}Ni=1, {πDSi}Ni=1, R, Q̂)
and IdealS = ({DS′i}Ni=1, {π′

DSi
}Ni=1, R

′, Q̂′), it means S not
only breaks the semantic security of Paillier cryptosystem but
also fails to extract x⃗i and simulate {π′

DSi
}Ni=1, which happens

with negligible probability under the soundness property and
the zero-knowledge property of ZkPoK. For phase-4, the
simulation of S is perfect as long as the soundness property
is achieved in the proof, πDK, since the auditing result, RES
is fully determined by {info

NUM′j
}Mj=1 when {k

NUM′j
}Mj=1 can be

correctly extracted.
(Case-2) S internally simulates the proposed scheme by

representing honest drivers to A, and externally communicates
with T in the ideal world as malicious IC:

• Phase-1: S uses the knowledge extractor of the proof,
πParams, to extract w⃗ and ϵ by interacting A internally,
and submits w⃗ and ϵ to T in the ideal world;

• Phase-2: In the ideal world, S triggers T and retrieves
the personalized auto insurance premiums (R̃, Q̃) from
T , and then generates x⃗′i = (x′i,1, x

′
i,2, ..., x

′
i,n) according

to yi = w⃗ · x⃗′i + ϵ. Specifically, if yi ≥ 0, yi is chosen
uniformly from [0, 2κ − 1]; otherwise, yi is chosen from
[−2κ + 1, 0), and S can calculate x⃗′i accordingly. S

then chooses random numbers r̃i ∈ (2lr−1, 2lr − 1],
ãi ∈ (2la−1, 2la − 1], b̃i ∈ (2lb−1, 2lb − 1], ṽi ∈ [0, 2τN)
and sets r̃′i = ãir̃i and ṽ′i = ãiṽi. Based on the inputs
of A (E⃗), S can create Paillier ciphertexts and FO
commitments, D̃Di = (Ẽi, Ẽ ′i , ˜comi, ˜com′i), as follows:

Ẽi =
n∏

j=1

E
x′
i,j

j · En+1 · (1 +N)r̃i , ˜comi = gr̃ihṽi ,

Ẽ ′i = Ẽai
i · (1 +N)−r′i · (1 +N)bi , ˜com′i = gr̃

′
ihṽ

′
i .

Based on D̃Di, S uses the zero-knowledge simulator to
simulate the proof, π̃ ˜DDi

, chooses a random permutation,
c̃ti, and sets D̃Ai = c̃ti;

• Phase-3: There is no need for S to simulate the phase
since S has no input nor output in this phase in the real
world;

• Phase-4: S randomly chooses symmetric keys
{k̃NUM′j}

M
j=1, and uses the public key cryptosystem

to generate {D̃Kj = PEnc(k̃pk,NUM′j )}
M
j=1. Next, S uses

the zero-knowledge simulator to simulate the proof, π̃D̃K.

Analysis of Case-2: For phase-1, the probability that S
fails to extract w⃗ and ϵ is negligible according to the
soundness property of ZkPoK. For phase-2, if D can dis-
tinguish RealA = (DDi, πDDi , DAi, R, Q̂) and IdealS =
(D̃Di, π̃ ˜DDi

, D̃Ai, R̃, Q̃), it means that the semantic security of
Paillier cryptosystem can be broken, the FO commitments are
not statistically hiding, and ZkPoK is the zero-knowledge,
which happens with negligible probability. For phase-4, if
D can distinguish RealA = ({kNUM′j}

M
j=1, {DKj}Mj=1, πDK) and

IdealS = ({k̃NUM′j}
M
j=1, {D̃Kj}Mj=1, π̃D̃K), we can use D to

break the semantic security of the public key cryptosystem
and the symmetric key cryptosystem used in our proposed
scheme, and also the probability that S fails to simulate π̃D̃K
is negligible according to the zero-knowledge property of
ZkPoK.

As a consequence, we can conclude that the views of
the ideal world, IdealS , and the views of the real world,
RealA are computationally indistinguishable in two cases, and
completes the security proof.

B. Analysis of Fraud Resistance

Whether a driver chooses to cheat or not depends on the
payoff received after cheating. According to Equation 6, if
IC increases DP and M, the average payoff is reduced. From
Figure 10, we can see that when DP = 1500 and M = 3,
the payoff Θ ≈ 0 indicating the driver can gain approximate
zero from the cheating and has no motivation to cheat in our
proposed scheme.

We also analyze the situation from a different angle: how
to ensure a driver does not cheat in all N reports based on
Equation 4. As the driver only knows M1 =M and has no
information about Mi(1 < i ≤ N ), the driver is believed to
set Si = Ni −M (as the most aggressive attacker), and we
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Fig. 10. The payoff of a malicious driver (N = 300, S = N − M, Q =
1800, and χ = 2.7)

can calculate the probability, P̃ , that the driver never chooses
to cheat in all N reports as follows:

P̃ =

N−M∏

k=0

(1− f(N − k,M,N − k −M, χ, DP)) (7)

The probability, P̃ , is affected by N , M, χ, and DP. The
number of permitted auditing,M, should be a relatively small
value compared to N and DP should be a reasonable value
that is not much larger than the driver’s basic auto insurance
premium, Q. Under the circumstance, P̃-fraud resistance can
be defined as follows:

Definition 2 (P̃-fraud resistance): Given N ,M, χ, and DP,
the probability that a driver does not cheat in all N reports
of driving data is equal to P̃ .

For easy understanding, an instance is set where N = 300,
M = 1, 2, 3, S = N−M, and Q = 2400. We set the different
deposits DP = (50% ∗ Q, 100% ∗ Q, 100% ∗ Q), and draw
the varies of the probability that the driver does not cheat at
trip i = 1 to N , the varies of the probability that the driver
does not cheat until trip i = 1 to N , and the mean number
of cheats in Figure 11 (a), (b), and (c), respectively. From
Figure 11 (a) and (b), we can see that appropriate parameter
selections are extremely important, with a few deposits and
permitted auditing numbers, the chance that a driver chooses to
cheat is largely increased. From Figure 11 (c), we can see that
the permitted auditing number, M, is a dominant parameter
that influences a malicious driver’s behavior compared to the
deposit, DP. It can be found that when N = 150% ∗ Q and
M = 3, P̃ ≥ 97%, which is a reasonable setting, i.e., the
driver never cheats with the probability of 97% in uploading
the driving data of all 300 trips. In other words, our proposed
scheme only requires TPA to audit at most 1% driving data to
ensure that drivers will behave honestly with the probability
97% when uploading their driving data.

VI. PERFORMANCE EVALUATION

A. Real-world Dataset

We use a public real-world dataset published by Grab2

for measuring driving safety and personalized car insurance,
which includes around 20, 000 real-world trips. Each trip
record has the telematics attributes such as GPS accuracy, GPS
bearing, acceleration data, gyroscope data, timestamp, speed,
and a label indicating whether the trip is safe or not.

We perform some features engineering techniques on the
raw data. Specifically, we clean the dataset by removing the
unrealistic records where the speed is larger than 400km/h,
and extract additional features of a trip including the mean,
max, and min values of acceleration, speed, and gyroscope,
etc. We choose mean, max, and min values because these
values capture the driving behavior of a driver, e.g., preferring
a sudden brake. After feature engineering, we obtain a new
dataset of extracted features, and the dimension of the features
is 34 (n = 34).

B. Proof-of-concept Implementation and Experiments

In order to evaluate the performance of the proposed
scheme, we implement a proof-of-concept prototype using
Java and built our implementation on the testnet of an open-
source consortium blockchain, Hyperledger Fabric [29]. We
have a smartphone (OS: Android, CPU: Krin 980, RAM: 6G)
as the client and a laptop (OS: MAC OS, CPU: Dual-Core
Intel Core i7, RAM: 16GB) as the server which simulates the
testnet of the consortium blockchain and simulates the server
of the auto insurance company. The blockchain adopts the
default setting of Hyperledger Fabric v2.1: two peer nodes
belonging to two organizations and one order node with the
RAFT consensus protocol, and they are connected in a local
network. We develop a Java library which realizes function
modules defined in our proposed scheme, including the driving
feature extraction module, the encryption/decryption module,
the evaluation results proof/verification module, etc. The de-
veloped Java library is integrated with Hyperledger Fabric
SDKs (Java) to construct the smartphone client, the server of
IC, and the contract deployed in the blockchain. The source
codes can be found at https://github.com/EnderCheng/PCI.

Since the applications of personalized car insurance do not
require to be real-time, the requirements of the computational
and the communication efficiency can be relaxed to some
extent, and we put more efforts on testing the feasibility of
the proposed scheme. Although there are some existing works
related to privacy-preserving personalized car insurance as
discussed in Section VII, they do not have the same driving
safety evaluation model as ours (the LR model) or do not
design their schemes under a malicious security model as
shown in Table III. That is the reason that we do not compare
our scheme with their schemes in terms of computational costs
and communication overheads, as the comparison cannot be
performed fairly. It is explicit that our scheme achieves a more
rigorous security model with flexible functions by sacrificing

2https://www.grab.com/sg/aiforsea/aiforseachallenges/
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Fig. 11. Under the setting DP = (50% ∗ Q, 100% ∗ Q, 150% ∗ Q) and M = (1, 2, 3), we have (a) the probability that the driver does not cheat at trip
i = 1 → 300; (b) the probability that the driver does not cheat until trip i = 1 → 300; and (c) the mean number of cheats in all 300 trips

a little efficiency. Therefore, instead of comparing with ex-
isting works, we compare the scheme with a plaintext-based
personalized car insurance scheme to measure the efficiency
loss caused by applying the privacy-preserving techniques.
The plaintext-based scheme implies that the driver calculates
yi = w⃗·x⃗i+ϵ and uploads yi in plaintext to the blockchain and
only the detailed driving data are encrypted using a symmetric
key cryptosystem.

In our experiments, the security parameters are chosen to
fulfill essential security requirements, i.e., τ = 256, ζ = 2048,
lr = la = 300, lb = 250, lα = 600, and lβ = 350.
The symmetric key cryptosystem is AES-CBC-128, and the
public key cryptosystem is EC-Elgamal with BN254 curve.
The configuration of the consortium blockchain also affects
the throughput and the latency of the system, and we follow
the default setting of Hyperledger Fabric v2.1 testnet where a
block is generated every 2 seconds and at most 10 transactions
are allowed in one block.

System Initialization: It takes around 37 seconds to set up
the consortium blockchain on the laptop. Two DMs, one IC,
and one TPA, take fewer than 13 seconds to generate public
parameters and public/private key pairs. Since the initialization
only runs once, it can fulfill the requirements of real-world
applications.
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Fig. 12. (a) Similarity ratio of driving safety classification results (with 1 and
4 decimal precision) and (b) computational costs of one range proof (lx = 24
and lx = 87)

Accuracy: Since the inputs fields of Paillier cryptosystem
is ZN while the weights, w⃗, the intercept, ϵ, and a driver’s
features x⃗ are floating numbers, we need to magnify the
number with the decimal places and transform the number

TABLE II
THE OFF-CHAIN COSTS FOR DRIVERS AND IC (n = 34)

Entity Driver (Android) IC (Laptop)
Time-Rep (Plaintext) 112 ms N/A

Time-Rep (This paper) 3708 ms N/A
Time-Eval (Plaintext) N/A 84 ms

Time-Eval (This paper) N/A 1995 ms

into ZN and determine the corresponding lw, lϵ, lx, and κ,
e.g., when one of the weights is 1.043235465, we need to
transform the number to 1, 043, 235, 465 by magnifying 109

times if we want to keep the full precision. The times of
magnifying also affect the choices of lw, lϵ, lx, and κ, and
the efficiency of the proposed scheme since the range proofs
are affected by the bit lengths. For the real-world dataset, the
features extracted from the datasets need to be magnified 1023

times (lx = 87) to guarantee the full precision, which leads to
large computational burdens on the client side. To reduce the
costs, we approximate the model parameters and the driver’s
features and notice that the classification accuracy is hardly
affected. As shown in Figure 12 (a), when we maintain the
whole integer precision and keep the decimal precision to
only 4, the classification results of the original model and
the model with approximated parameters and features are
slightly different, and around 99.9% results are same. Under
the circumstance, the features only need to be enlarged 104

times, and we have 2lw ≈ 105(lw = 17), 2lϵ ≈ 105(lϵ = 17),
and 2lx ≈ 107(lx = 24). When the decimal precision is set
to 1 (lw = 7, lϵ = 7, lx = 14), we can still guarantee that
around 97% classification results are same. Also, we run a
range proof 100 times, and chooses different lx to evaluate the
computational efficiency. From Figure 12 (b), the execution
time of a single range proof is less when lx (similar to lw
and lϵ) is smaller, and the trade-off between accuracy and
efficiency can be obtained by adjusting lw, lϵ, and lx. In the
following evaluations, we choose lw = lϵ = 17 and lx = 24
to guarantee both efficiency and accuracy.

Computational Costs: The computational costs involve two
parts: 1) the off-chain costs at the client side (the driver’s
smartphone and IC’s server) and 2) the on-chain costs. For the
off-chain costs, we mainly evaluate the execution time spent
by a driver to generate one driving report (Time-Rep), and the
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Fig. 13. The on-chain costs of core functions defined in the personalized auto
insurance contract

execution time spent by the server to generate one evaluation
result based on the report (Time-Eval). The experiment results
are the average results with 20 trials and are shown in Table II.
Our proposed scheme leads to second-level delays due to
the ciphertext operations, compared with the plaintext-based
scheme. However, the Android insurance App can be run in the
background as services, which does not affect user experience,
since the driving report is only generated when the driver is
driving. In the meantime, IC’s server can be more powerful
cloud server with multiple threads to support more drivers.
For the on-chain costs, we evaluate the core functions defined
in Figure 3. The average experiment results with 20 trials
are shown in Figure 13. The y-axis of Figure 13 denotes the
transaction confirmation delay of each core function when the
function is triggered, and it can be seen that the transaction
confirmation delay of the proposed scheme and the plaintext-
based scheme are almost the same. The exception is that
our proposed scheme has obvious longer confirmation delay
when triggering functions Record and Evaluate. According
to our setting, this situation happens because the consortium
blockchain needs to wait at least 2 seconds to package a
confirmation transaction into a block. With the setting, no
matter how efficient the on-chain computations can be, e.g.,
just taking 5 ms to run on-chain operations, a transaction
(that triggers a function) still needs to wait 2 seconds to be
confirmed. It is noticed that except for functions Record and
Evaluate, other on-chain operations defined in our scheme can
be done in around 2 seconds, which makes the transaction
delay is around 2 seconds for these functions (similar to
the plaintext-based scheme). Functions Record and Evaluate
require more than 2.5 seconds to run, and thus they have longer
transaction confirmation delay. From another perspective, the
block generation/confirmation delay in the blockchain cannot
be arbitrarily shortened since a short delay may seriously
degrade the blockchain throughput. These reasons together
lead to the result: our proposed scheme has almost the same
on-chain delay as the plaintext-based scheme.

Communication & Storage Overheads: We also evaluate the
communication and on-chain storage overheads. We can store
the hash values of the data in the blockchain while maintaining
the data contents in an off-chain storage such as IPFS. In our

experiments, the size of personalized auto insurance contract is
6.5MB (since we package several open-source java libraries).
The data uploaded by the driver vary according to the size of
the driving data (how many trips), and the data stored in the
blockchain also vary accordingly. For a real trip with around
1500 records, the data size uploaded by a driver is around
327KB, and the on-chain storage is hundreds of bytes (i.e.,
hash values).

VII. RELATED WORKS

In this section, we review existing works on securing
personalized car insurance (PCI). Popa et al. [30] proposed
an anonymous scheme for protecting driver privacy in PCI. In
their scheme, drivers’ reports are anonymized by using random
tags generated from homomorphic commitments, and the data
such as locations are bound with random tags. Only a pair of
the driver’s reports can be linked for counting the number of
speed violations to measure the driving safety. To prevent data
fraud, an auditable tamper-evident transponders are installed
at drivers’ vehicles [31]. The similar idea is also adopted by
a following work proposed by Troncoso et al., where a black
box is deployed at the driver’s vehicle [32]. The black box
includes sensors such as GPS modules to collect the necessary
information and generate statistical data for calculating a
driver’s insurance premium. Moreover, third parties named
policyholders can use USB sticks to physically extract detailed
data from the black box, and detect the cheating behavior of
the driver.

Instead of being concentrated on privacy protection, Zhou et
al. proposed a privacy attack on PCI where drivers’ trajectories
are recovered based on collected telematics data [33]. They
also proposed a privacy-preserving speed data aggregation
protocol in which the driving safety can be analyzed based
on the sum of the speed data that exceeds a threshold. To
prevent data forgery, they assume that there are two kinds
of data collected from a vehicle: one from the vehicle’s
on-board unit and the other from the driver’s smartphone,
and at least one of the data are unhampered. Based on the
assumption, they proposed an auditing method to compare
these two data to detect potential adversaries. The above-
mentioned three schemes use aggregation methods for cal-
culating driving safety scores, while Rizzo et al. proposed
a privacy-preserving driver style recognition protocol based
on secure multi-computations, which can evaluate driving
safety privately under a decision-tree model [34]. There exists
another similar work that applies the K-means model using
secure multi-party computations, but since these protocols are
designed based on a semi-honest adversarial model, they do
not consider the data fraud attack performed by malicious
drivers [35].

Recently, blockchain has been introduced into PCI, as
blockchain can provide many additional properties for PCI,
such as immutable, distributed, and transparent data exchange
and management, which brings many advantages [36]–[40].
Accordingly, Wan et al. proposed a blockchain-assisted usage-
based insurance scheme which relies on hidden-vector encryp-
tion [41]. In their scheme, driving time, speed, acceleration
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TABLE III
COMPARISON BETWEEN OUR SCHEME AND EXISTING WORKS

Scheme Architecture Driver
Privacy

Model
Privacy

Adversarial
Model

Public
Verifiability

Fraud Resistance Driving Safety
Evaluation Model

Permission-
based Audit

[30] Centralized Data
Anonymity

N/A Malicious N/A Tamper-evident
Device

Statistic-based
Model

N/A

[32] Centralized Data
Privacy

N/A Malicious N/A Tamper-evident
Device

Statistic-based
Model

N/A

[33] Centralized Data
Privacy

N/A Untrusteda N/A Probabilistic Data
Auditing

Statistic-based
Model

N/A

[34] Centralized Data
Privacy

Parameter
Privacy

Semi-honest N/A N/A Decision Tree
Model

N/A

[35] Centralized Data
Privacy

Parameter
Privacy

Semi-honest N/A N/A K-means Model N/A

[41] Blockchain Data
Privacy

N/A Untrusted Support Accident-based
Detectionb

Statistic-based
Model

N/A

[42] Blockchain Data
Privacy

N/A Untrusted Support Accident-based
Detection

Statistic-based
Model

N/A

This
paper

Blockchain Data
Privacy

Parameter
Privacy

Rationally
Malicious

Support Contract-based
Fraud Resistance

Logistic Regression
Model

Support

a An untrusted driver means the driver will follow the scheme but also choose to cheat to reduce insurance fee.
b There is an assumption that the data fraud can be easily detected if a traffic accident happens.

data are encoded using binaries and encrypted using the
hidden-vector encryption, and the ciphertext are published
in the blockchain that supports privacy-preserving compar-
ison, which can be used to measure the driving statistics
including the number of speed violations and sudden accel-
erations/brakes. To reduce the large storage costs due to the
hidden-vector encryption and binary vectors, Qi et al. built
another design based on compact cryptographic commitments
where the binaries are hidden in the commitments [42].
Average speed and acceleration for a time period can be
extracted from the commitments with zero-knowledge proof
in the blockchain, which can be used for calculating driving
safety scores and insurance premiums. These two schemes
both assume that the driver will faithfully follow the protocol
and the data fraud behavior can be easily detected as long as
the traffic accidents happen.

Table III summarizes the difference between our proposed
scheme and existing works, in terms of: (a) architecture,
(b) driver privacy, (c) model privacy, (d) adversarial model,
(e) public verifiability, (f) fraud resistance, (g) driving safety
evaluation model, and (h) permission-based audit. Note that,
although most of the existing works also consider data privacy,
their data privacy definitions are different from our scheme. In
the existing works, the statistics of the driving data such as the
aggregated average speed data will be exposed for evaluating
driving safety, while our work only reveals whether a trip of
a driver is safe or not without leaking any driving data.

VIII. CONCLUSION

We have proposed a blockchain-assisted personalized car
insurance scheme, which not only allows auto insurance
companies to analyze drivers’ behavior in a privacy-preserving
manner but also resists fraud attacks launched by mali-
cious drivers. Since our scheme is designed on a consortium
blockchain, drivers can verify that auto insurance companies
indeed use publicly recognized models to customize their
auto premiums based on long-term driving data, which is

more transparent than centralized schemes. We have conducted
formal security analysis and implemented a proof-of-concept
prototype based on an open-source consortium blockchain to
demonstrate our scheme’s feasibility. For the future work, we
will investigate a new blockchain-assisted privacy-preserving
scheme that enables auto insurance companies to transparently
and privately train driving safety evaluation models through
federated learning, and explore more advanced blockchain-
assisted vehicular applications.
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